Abstract

Stochastic incorporation kinetics can be a limiting factor in the scalability of semiconductor fabrication technologies using atomic-precision techniques. While these technologies have recently been extended from donors to acceptors, the extent to which kinetics will impact single-acceptor incorporation has yet to be assessed. To identify the precursor molecule and dosing conditions that are promising for deterministic incorporation, we develop and apply an atomistic model for the single-acceptor incorporation rates of several recently demonstrated molecules: diborane (B2H6), boron trichloride (BCl3), and aluminum trichloride in both monomer (AlCl3) and dimer forms (Al2Cl6). While all three precursors can realize single-acceptor incorporation, we predict that diborane is unlikely to realize deterministic incorporation, boron trichloride can realize deterministic incorporation with modest heating (50 °C), and aluminum trichloride can realize deterministic incorporation at room temperature. We conclude that both boron and aluminum trichloride are promising precursors for atomic-precision single-acceptor applications, with the potential to enable the reliable production of large arrays of single-atom quantum devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.