Abstract

Boogie is a program verification condition generator for an imperative core language. It has front-ends for the programming languages C# and C enriched by annotations in first-order logic.Its verification conditions — constructed via a wp calculus from these annotations — are usually transferred to automated theorem provers such as Simplify or Z3. In this paper, however, we present a proof-environment, HOL-BoogieP, that combines Boogie with the interactive theorem prover Isabelle/HOL. In particular, we present specific techniques combining automated and interactive proof methods for code-verification.We will exploit our proof-environment in two ways: First, we present scenarios to ”debug” annotations (in particular: invariants) by interactive proofs. Second, we use our environment also to verify ”background theories”, i.e. theories for data-types used in annotations as well as memory and machine models underlying the verification method for C.KeywordsBasic BlockBackground TheoryExecution TraceAutomate Theorem ProverInteractive ProofThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.