Abstract
We introduce in this paper the notion of Hodge similarities of transcendental lattices of hyperkähler manifolds and investigate the Hodge conjecture for these Hodge morphisms. Studying K3 surfaces with a symplectic automorphism, we prove the Hodge conjecture for the square of the general member of the first four-dimensional families of K3 surfaces with totally real multiplication of degree two. We then show the functoriality of the Kuga–Satake construction with respect to Hodge similarities. This implies that, if the Kuga–Satake Hodge conjecture holds for two hyperkähler manifolds, then every Hodge similarity between their transcendental lattices is algebraic after composing it with the Lefschetz isomorphism. In particular, we deduce that Hodge similarities of transcendental lattices of hyperkähler manifolds of generalized Kummer deformation type are algebraic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.