Abstract
Major depressive disorder (MDD), a leading cause of years of life lived with disability, presents challenges in diagnosis and treatment due to its complex and heterogeneous nature. Emerging evidence indicates that reward processing abnormalities may serve as a behavioral marker for MDD. To measure reward processing, patients perform computer-based behavioral tasks that involve making choices or responding to stimulants that are associated with different outcomes, such as gains or losses in the laboratory. Reinforcement learning (RL) models are fitted to extract parameters that measure various aspects of reward processing (e.g. reward sensitivity) to characterize how patients make decisions in behavioral tasks. Recent findings suggest the inadequacy of characterizing reward learning solely based on a single RL model; instead, there may be a switching of decision-making processes between multiple strategies. An important scientific question is how the dynamics of strategies in decision-making affect the reward learning ability of individuals with MDD. Motivated by the probabilistic reward task within the Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EMBARC) study, we propose a novel RL-HMM (hidden Markov model) framework for analyzing reward-based decision-making. Our model accommodates decision-making strategy switching between two distinct approaches under an HMM: subjects making decisions based on the RL model or opting for random choices. We account for continuous RL state space and allow time-varying transition probabilities in the HMM. We introduce a computationally efficient Expectation-maximization (EM) algorithm for parameter estimation and use a nonparametric bootstrap for inference. Extensive simulation studies validate the finite-sample performance of our method. We apply our approach to the EMBARC study to show that MDD patients are less engaged in RL compared to the healthy controls, and engagement is associated with brain activities in the negative affect circuitry during an emotional conflict task.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.