Abstract

OBJECTIVEType 1 diabetes is an autoimmune disease characterized by the destruction of insulin-producing β-cells. NOD mice provide a useful tool for understanding disease pathogenesis and progression. Although much has been learned from studies with NOD mice, increased understanding of human type 1 diabetes can be gained by evaluating the pathogenic potential of human diabetogenic effector cells in vivo. Therefore, our objective in this study was to develop a small-animal model using human effector cells to study type 1 diabetes.RESEARCH DESIGN AND METHODSWe adoptively transferred HLA-A2–matched peripheral blood mononuclear cells (PBMCs) from type 1 diabetic patients and nondiabetic control subjects into transgenic NOD-scid/γcnull/HLA-A*0201 (NOD-scid/γcnull/A2) mice. At various times after adoptive transfer, we determined the ability of these mice to support the survival and proliferation of the human lymphoid cells. Human lymphocytes were isolated and assessed from the blood, spleen, pancreatic lymph node and islets of NOD-scid/γcnull/A2 mice after transfer.RESULTSHuman T and B cells proliferate and survive for at least 6 weeks and were recovered from the blood, spleen, draining pancreatic lymph node, and most importantly, islets of NOD-scid/γcnull/A2 mice. Lymphocytes from type 1 diabetic patients preferentially infiltrate the islets of NOD-scid/γcnull/A2 mice. In contrast, PBMCs from nondiabetic HLA-A2–matched donors showed significantly less islet infiltration. Moreover, in mice that received PBMCs from type 1 diabetic patients, we identified epitope-specific CD8+ T cells among the islet infiltrates.CONCLUSIONSWe show that insulitis is transferred to NOD-scid/γcnull/A2 mice that received HLA-A2–matched PBMCs from type 1 diabetic patients. In addition, many of the infiltrating CD8+ T cells are epitope-specific and produce interferon-γ after in vitro peptide stimulation. This indicates that NOD-scid/γcnull/A2 mice transferred with HLA-A2–matched PBMCs from type 1 diabetic patients may serve as a useful tool for studying epitope-specific T-cell–mediated responses in patients with type 1 diabetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.