Abstract

Human immunodeficiency virus type-1 (HIV-1) is able to infect non-dividing cells such as tissue macrophages productively because post-entry viral nucleoprotein complexes are specifically imported into the nucleus in the absence of mitosis. Although it has been proposed that an amino-terminal region of the viral matrix (MA, p17Gag) protein harbors a basic-type nuclear localization sequence (NLS) that contributes to this process, utilization of three distinct nuclear import assays failed to provide any direct supporting evidence. Instead, we found that disruption of this region (26KK-->TT) reduces the rate at which the viral Gag polyprotein (p55Gag) is post-translationally processed by the viral protease. Consistent with the fact that appropriate proteolytic processing is essential for efficient viral growth in all cell types, we also show that the 26KK-->TT MA mutation is equivalently deleterious to the replication of a primary macrophage-tropic viral isolate in cultures of non-dividing and dividing cells. Taken together, these observations suggest that proteins other than MA supply the NLS(s) that enable HIV-1 to infect non-dividing cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.