Abstract
BackgroundHIV resistance affects virological response to therapy and efficacy of prophylaxis in mother-to-child-transmission. The study aims to assess the prevalence of HIV primary resistance in pregnant women naïve to antiretrovirals.MethodsCross sectional baseline analysis of a cohort of HIV + pregnant women (HPW) enrolled in the study entitled Antiretroviral Management of Antenatal and Natal HIV Infection (AMANI, peace in Kiswahili language). The AMANI study began in May 2010 in Dodoma, Tanzania. In this observational cohort, antiretroviral treatment was provided to all women from the 28th week of gestation until the end of the breastfeeding period. Baseline CD4 cell count, viral load and HIV drug-resistance genotype were collected.ResultsDrug-resistance analysis was performed on 97 naïve infected-mothers. The prevalence of all primary drug resistance and primary non-nucleoside reverse-transcriptase inhibitors resistance was 11.9% and 7.5%, respectively. K103S was found in two women with no M184V detection. HIV-1 subtype A was the most commonly identified, with a high prevalence of subtype A1, followed by C, D, C/D recombinant, A/C recombinant and A/D recombinant. HIV drug- resistance mutations were detected in A1 and C subtypes.ConclusionOur study reports an 11.9% prevalence rate of primary drug resistance in naïve HIV-infected pregnant women from a remote area of Tanzania. Considering that the non-nucleoside reverse-transcriptase inhibitors are part of the first-line antiretroviral regimen in Tanzania and all of Africa, resistance surveys should be prioritized in settings where antiretroviral therapy programs are scaled up.
Highlights
HIV resistance affects virological response to therapy and efficacy of prophylaxis in mother-to-childtransmission
The L89M mutation increases the catalytic efficiency and vitality of the HIV-1 protease gene in the presence of other protease mutations in non-B African viral subtypes [17] and can determine a low accumulation of primary protease mutations in nonB subtypes [18,19]. These findings suggest that in addition to the primary drug-related mutations already described in B clades, particular attention should be paid to some natural polymorphisms in the therapeutic management of patients infected by HIV-1 non-B subtypes
Different from a 2004 report that described a low detection of drug resistance in A subtype compared to D subtype [20], we reported that the primary nucleoside reverse transcriptase inhibitor (NNRTI) drugrelated mutations were all clustered in the A1 subtype
Summary
HIV resistance affects virological response to therapy and efficacy of prophylaxis in mother-to-childtransmission. The scale-up of HIV treatment in low- and middle-income countries has been crucial to substantially reduce AIDSrelated morbidity and mortality as well as mother-tochild-transmission (MTCT). With the introduction of antiretroviral drugs in low-resource countries (known for the largest assortment of non-B subtypes), gaining a better understanding of the responsiveness to antiretroviral therapy and HIV-1 drug resistance in non-B strains has become a priority. In such settings, patients who do not respond to therapy are often blindly switched from a non-nucleoside reverse transcriptase inhibitor (NNRTI) to a protease inhibitor (PI)-based regimen. Since treatment failure is detected late in most patients (at a stage when widespread resistance is common), the risk of switching to regimens with limited efficacy increases
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.