Abstract

The Rainbow Mountain area was the site of three surface-rupturing earthquakes on 6 July and 23 August 1954. More than 50 field measurements of surface offsets constrain the distribution of slip along the discontinuous and distrib- uted rupture zone that formed during the earthquake sequence. Vertical offsets reach a maximum of 0.8 m with the average vertical offset being 0.2 m. In contrast to original reports, we see evidence for a right-lateral component of slip along portions of the rupture zone, including offset stream channels (0.5-1.0 m), left-stepping en echelon scarps, and a well-preserved, 100-m-long mole track. The right-slip com- ponent is consistent with focal plane solutions for the events and recent geodetic results. Previously unmapped surface ruptures now extend the known rupture length of the sequence by 25 km to a total of 70 km. Surface ruptures along the previously unmapped Fourmile Flat fault are subparallel to and form a 10-km left step to the southeast of the Rainbow Mountain fault. Event locations and anecdotal information indicate that the Fourmile Flat ruptures represent minor, primary surface rupture associated with the large 6 July aftershock, triggered 11 hr after the initial 6 July Rainbow Mountain event. The paleoseismic histories of the Rainbow Mountain and Fourmile Flat faults, as recorded in natural and trench exposures, are different although both faults experi- enced three post 15-ka surface rupturing events, including 1954. Bracketing ages for triultimate events on both faults do not overlap. However, constraints on the penultimate event for the Rainbow Mountain and triultimate event for the Fourmile Flat fault do overlap slightly, allowing the possibility that they may have ruptured close in time as in 1954. The Holocene slip rate for the Fourmile Flat fault (0.40 mm/yr) is similar to the post-latest Pleistocene rate for the Rainbow Mountain fault (0.20-0.46 mm/yr) even though the total length of the Fourmile flat (10 km) is much shorter than the overall length of the Rainbow Mountain rupture zone (60 km), indicating that even minor faults can be important for assessing regional strain rates and patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.