Abstract

Previously, we have shown that the transgene expression in the endothelial cell line ECV 304 strongly depends on the presence of low concentrations of Ca2+. However, it remained unclear, which transfection steps are controlled by Ca2+ ions. In the present study, we constructed transfection complexes of digoxigenin-labelled DNA and FITC-labelled histone H1. We monitored the pathway of these complexes with the use of anti-digoxigenin and anti-cathepsin B antibodies and immunofluorescence microscopy. Double labelling of DNA and cathepsin B permitted the localization of transfection complexes into endosomes/lysosomes which suggests an uptake of transfection complexes via endocytosis. It was also found that the uptake of transfection complexes by the cells was independent of the presence or absence of Ca2+ ions in the transfection medium. On the other hand, the presence of Ca2+ in the transfection medium dramatically changed the composition of the transfection complexes inside the endosome/lysosome compartment, which resulted in a strong reduction of H1 binding to DNA. Presence of Ca2+ in the postincubation medium for 24 h resulted in release of the transfection complexes with reduced H1 content from the endosomes/lysosomes into the cytosol. In the absence of Ca2+ the transfection complexes practically disappeared. These results allow us to come to the following conclusions: Ca2+ ions control the reorganization of the transfection complexes in endosomes/lysosomes and their release into the cytosol, which is an important prerequisite for transgene expression, whereas uptake of transfection complexes by the cells is not dependent on Ca2+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.