Abstract

In this study, the electrical resistance of the whole body and histological changes of skeletal muscle were investigated in rats according to the increase in radiation dose. A total of 15 male Sprague-Dawley rats (5-weeks-old) were randomly divided into 5 groups (each, n = 3). Each group received 1 Gy, 5 Gy, 10 Gy and 20 Gy systemic exposure, and the non-irradiated group was used as a control for morphological comparison. After attaching an electrode clip to the forelimb of the rat, an AC frequency was applied before and 4 days after irradiation using an impedance/gain-phase analyzer, and the measurement system was automatically controlled with LabVIEW. Comparing to before irradiation after 4 days, the difference in the average impedance values at 1 Gy, 5 Gy, 10 Gy, and 20 Gy was 1188±989 ohm, 3076±2251 ohm, 7650±6836 ohm, and 10478±6250 ohm, respectively. By comparing the normal group and the experimental group, muscle fiber atrophy and collagen fibers around blood vessels were observed (p < 0.05, control group vs 5 Gy or more high-dose group). These results confirmed the previously reported morphological changes of skeletal muscle and our hypothesis that whole-body impedance measurement enables to reflect tissue changes after irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.