Abstract

Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episode (MELAS) and myoclonic epilepsy and ragged-red fibers (MERRF) are rare disorders caused by point mutation of the tRNA gene of the mitochondrial genome. To understand the pathogenetic mechanism of MELAS and MERRF, we studied four patients. Serially sectioned frozen muscle specimens with a battery of histochemical stains were reviewed under light microscope and ultrastructural changes were observed under electron microscope. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis was performed and the tRNA genes were sequenced to confirm mutations. In two patients with MELAS, strongly succinyl dehydrogenase positive blood vessels (SSVs) and many cytochrome oxidase (COX) positive ragged-red fibers (RRFs) were observed, and A3243G mutations were found from the muscle samples. In two patients with MERRF, neither SSV nor COX positive RRFs were seen and A8344G mutations were found from both muscle and blood samples. In the two MERRF families, the identical mutation was observed among family members. The failure to detect the mutation in blood samples of the MELAS suggests a low mutant load in blood cells. The histochemical methods including COX stain are useful for the confirmation and differentiation of mitochondrial diseases. Also, molecular biological study using muscle sample seems essential for the confirmation of the mtDNA mutation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.