Abstract

The abiotic synthesis of histidine under experimental prebiotic conditions has proven to be chemically promising and plausible. Within this context, the present results suggest that histidine amino acid may function as a simple prebiotic catalyst able to enhance amino acid polymerization. This work describes an experimental and computational approach to the self-assembly and stabilization of DL-histidine on mineral surfaces using antigorite ((Mg, Fe)3Si2O5(OH)4), pyrite (FeS2), and aragonite (CaCO3) as representative minerals of prebiotic scenarios, such as meteorites, andsubaerial and submarine hydrothermal systems. Experimental results were obtained through polarized-light microscopy, IR spectroscopy (ATR-FTIR), and differential scanning calorimetry (DSC). Molecular dynamics was performed through computational simulations with the MM + method in HyperChem software. IR spectra suggest the presence of peptide bonds in the antigorite-histidine and aragonite-histidine assemblages with the presence of amide I and amide II vibration bands. The FTIR second derivative inspection supports this observation. Moreover, DSC data shows histidine stabilization in the presence of antigorite and aragonite by changes in histidine thermodynamic properties, particularly an increase in histidine decomposition temperature (272ºC in antigorite and 275ºC in aragonite). Results from molecular dynamics are consistent with DSC data, suggesting an antigorite-histidine closer interaction with decreased molecular distances (cca. 5.5Å) between the amino acid and the crystal surface. On the whole, the experimental and computational outcomes support the role of mineral surfaces in prebiotic chemical evolution as enhancers of organic stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.