Abstract

Histamine stimulated inositol phosphate formation by human skin fibroblasts. The effect of histamine was reduced but still readily apparent in the absence of extracellular Ca2+. Histamine caused a transient increase in intracellular free Ca2+ as detected by indo-1 and fura-2 fluorescence studies on cell populations and on individual cells. Similar increases were observed in the absence of extracellular Ca2+, indicating that the effect was primarily due to mobilization of Ca2+ from intracellular stores, presumably by inositol trisphosphate (IP3). The effects of histamine on phosphoinositide metabolism and intracellular Ca2+ were inhibited by pretreatment of the cells with phorbol esters, suggesting that the histamine receptor in fibroblasts is subject to feedback regulation by protein kinase C. Histamine inhibited the incorporation of [3H]-thymidine into DNA. The effects of histamine on inositol phosphate formation, intracellular Ca2+, and thymidine incorporation were blocked by the H1 receptor antagonist mepyramine. Our results indicate that human skin fibroblasts have H1 receptors coupled to the formation of inositol phosphates and mobilization of intracellular Ca2+. We suggest that this H1 receptor also mediates a block of the cell cycle and that histamine may play a physiological role in the regulation of fibroblast proliferation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.