Abstract
Hippocampal-prefrontal cortex (HC-PFC) interactions are implicated in working memory (WM) and altered in psychiatric conditions with cognitive impairment such as schizophrenia. While coupling between both structures is crucial for WM performance in rodents, evidence from human studies is conflicting and translation of findings is complicated by the use of differing paradigms across species. We therefore used functional magnetic resonance imaging together with a spatial WM paradigm adapted from rodent research to examine HC-PFC coupling in humans. A PFC-parietal network was functionally connected to hippocampus (HC) during task stages requiring high levels of executive control but not during a matched control condition. The magnitude of coupling in a network comprising HC, bilateral dorsolateral PFC (DLPFC), and right supramarginal gyrus explained one-fourth of the variability in an independent spatial WM task but was unrelated to visual WM performance. HC-DLPFC coupling may thus represent a systems-level mechanism specific to spatial WM that is conserved across species, suggesting its utility for modeling cognitive dysfunction in translational neuroscience.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.