Abstract

Under the condition of zero net strain, the effect of high temperature on the optical gain and threshold characteristics and the dependence of the characteristic temperature on the cavity length are analyzed theoretically for InGaAs/InGaAsP strain-compensated multiple quantum well (SCMQW) lasers lattice-matched to InP around 1.55 micrometers wavelength emission. The computed results show that as the temperature increases, both the threshold carrier density and the threshold current density increase. As the cavity length increases, the characteristic temperature increases and the temperature dependence becomes better. The characteristic temperature of a SCMQW laser is higher than that of a strain-compensated single quantum well (SCSQW) laser. Therefore, the temperature dependence of the SCMQW laser is better than that of the SCSQW laser. In addition, we find that in order to always keep 1.55 micrometers wavelength emission, certain relations exist among the well width, cavity length and temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.