Abstract
Solution-processed single-crystal organic semiconductors (OSCs) and amorphous metal oxide semiconductors (MOSs) are promising for high-mobility p- and n-channel thin-film transistors (TFTs), respectively. Organic−inorganic hybrid complementary circuits hence have great potential to satisfy practical requirements. However, some chemical incompatibilities between OSCs and MOSs, such as heat and chemical resistance, make it difficult to rationally integrate TFTs based on solution-processed OSC and MOS onto the same substrates. Here, we report a rational integration method based on the solution-processed semiconductors by carefully managing the device configuration and the deposition and patterning techniques from a materials point of view. The balanced high performances as well as the uniform fabrication of the TFTs led to densely integrated five-stage ring oscillators with a short propagation delay of 1.3 µs per stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.