Abstract

Zinc nitroprusside (ZnNP) nanoparticles were fabricated at the surface of zinc powder-doped carbon ceramic electrode (CCE) by a chemical derivatization process. This modified electrode was characterized by scanning electron microscopy, atomic force microscopy and cyclic voltammetry techniques. The charge transfer rate constant (ks) and charge transfer coefficient (α) were calculated for the electron exchange reaction of the ZnNP thin film. The ZnNP nanoparticle-modified CCE (ZnNP|CCE) showed good electrocatalytic activity toward hydrazine oxidation. The limit of detection (S/N = 3) and sensitivity were found to be 0.16 µM and 0.21 µA/µM, respectively. The mechanism of hydrazine electrooxidation at the electrode surface was studied. Finally, the ZnNP|CCE was successfully used for the determination of trace amount of hydrazine in different spiked and real samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.