Abstract

Our knowledge of ultracold quantum gases is strongly influenced by our ability to probe these objects. In situ imaging combined with single-atom sensitivity is an especially appealing scenario, as it can provide direct information on the structure and the correlations of such systems. For a precise characterization a high spatial resolution is mandatory. In particular, the perspective to study quantum gases in optical lattices makes a resolution well below one micrometre highly desirable. Here, we report on a novel microscopy technique, which is based on scanning electron microscopy and allows for the detection of single atoms inside a quantum gas with a spatial resolution of better than 150 nm. We document the great functionality of this technique by precise density measurements of a trapped Bose–Einstein condensate and the first experimental demonstration of single-site addressability in a submicrometre optical lattice. Electron microscopes are regularly used to resolve atoms in solid samples. It turns out that they can also be used to image atoms in a Bose–Einstein condensate—remarkably, without destroying the coherent properties of the condensate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.