Abstract
High-resolution radar imagery has attracted increasing interest in recent years. As more radars are endowed with a high-resolution capability, target classification will become a regular system function. In order to classify an aircraft using radar, one must have an understanding of how the radar imagery relates to the physical aircraft. This paper illustrates the more important radar backscattering features on a typical fighter aircraft. Radar backscatter from an aircraft can occur through a variety of mechanisms. Although direct specular and diffractive mechanisms usually account for the majority of the scattering, indirect phenomena such as cavity scattering and creeping wave scattering are significant. This investigation finds that scattering from engine cavities is a particularly important radar backscatter mechanism for a fighter aircraft. Radar data of an actual Mirage aircraft is collected from a target turntable facility. This data is processed to obtain high-resolution range profiles (HRRP) and inverse synthetic aperture radar (ISAR) images, which indicate the prominent radar scatterers on the aircraft. The imagery is qualitatively examined, and its suitability for target classification is discussed. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.