Abstract

To understand the potential impacts of projected climate change on the vulnerable agriculture in Central Asia (CA), six agroclimatic indicators are calculated based on the 9-km-resolution dynamical downscaled results of three different global climate models from Phase 5 of the Coupled Model Intercomparison Project (CMIP5), and their changes in the near-term future (2031–50) are assessed relative to the reference period (1986–2005). The quantile mapping (QM) method is applied to correct the model data before calculating the indicators. Results show the QM method largely reduces the biases in all the indicators. Growing season length (GSL, day), summer days (SU, day), warm spell duration index (WSDI, day), and tropical nights (TR, day) are projected to significantly increase over CA, and frost days (FD, day) are projected to decrease. However, changes in biologically effective degree days (BEDD, °C) are spatially heterogeneous. The high-resolution projection dataset of agroclimatic indicators over CA can serve as a scientific basis for assessing the future risks to local agriculture from climate change and will be beneficial in planning adaption and mitigation actions for food security in this region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.