Abstract

Strong orthogonality between differential ion mobility spectrometry (FAIMS) and mass spectrometry (MS) makes their hybrid a powerful approach to separate isomers and isobars. Harnessing that power depends on high resolution in both dimensions. The ultimate mass resolution and accuracy are delivered by Fourier Transform MS increasingly realized in Orbitrap MS, whereas FAIMS resolution is generally maximized by buffers rich in He or H2 that elevate ion mobility and lead to prominent non-Blanc effects. However, turbomolecular pumps have lower efficiency for light gas molecules and their flow from the FAIMS stage complicates maintaining the ultrahigh vacuum (UHV) needed for Orbitrap operation. Here we address this challenge via two hardware modifications: (i) a differential pumping step between FAIMS and MS stages and (ii) reconfiguration of vacuum lines to isolate pumping of the high vacuum (HV) region. Either greatly ameliorates the pressure increases upon He or H2 aspiration. This development enables free optimization of FAIMS carrier gas without concerns about MS performance, maximizing the utility and flexibility of FAIMS/MS platforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.