Abstract

This work presents a new method to achieve accelerated, high-resolution magnetic resonance spectroscopic imaging (MRSI) with spin-echo excitations. A new data acquisition strategy is proposed that integrates adiabatic refocusing, elimination of lipid suppression, rapid spatiospectral encoding with sparse (k,t)-space sampling, and interleaved water navigators. This integration leads to a significantly improved combination of volume coverage, spatial resolution (approximately 3 × 3.4 × 4 mm3) and speed (< 10 minutes), while eliminating additional scans for field mapping and coil sensitivity estimation. A data processing strategy that integrates parallel imaging reconstruction and subspace-based processing is devised to produce high-SNR spatiospectral reconstruction from the sparsely sampled, noisy and highresolution MRSI data. Promising in vivo results have been obtained to demonstrate the potential of the proposed method.Clinical relevance- The proposed method enabled volumetric MRSI with a nominal resolution of 3 × 3.4 × 4 mm3 in less than 10 minutes. With further developments and optimizations, the proposed method is expected to be useful for providing molecular-level information of brain functions and diseases, and has the potential to provide new biomarkers for disease diagnosis and treatment monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.