Abstract
We report the compressibility of two Prussian blue analogs (PBAs) under hydrostatic pressure, one with small and one with a relatively large cubic unit cell among PBAs, and investigate the modification of their elastic properties when the two lattices are coupled within a heteroepitaxial core–shell structure. Bulk modulus (K0) values are derived from x-ray powder diffraction experiments using a diamond anvil cell with silicone oil as a pressure-transmitting medium. The pressure–volume curves fitted to Murnaghan equations of states show that K0 inversely scales with the crystal packing for the rubidium cobalt hexacyanoferrate and rubidium nickel hexacyanochromate samples (K0 ∼ 29 GPa for Co-Fe PBA, a0 = 9.95 Å and ∼20 GPa for Ni-Cr PBA, a0 = 10.48 Å with a0 being the lattice constant at ambient pressure). The two single-phase samples undergo a cubic-to-rhombohedral phase transition above ∼0.8 GPa, which correlates fairly well with the build-up of nonhydrostatic pressure contributions in the cell. Within the core–shell structure, the volume change observed for the core scales with that of the shell because of the configuration close to the case of a solid pressure-transmitting medium. The Ni-Cr PBA shell layer exhibits an increased rhombohedral distortion with respect to the single-phase reference possibly associated with shearing at the core–shell interface. Its bulk modulus is not significantly modified with respect to that of the single-phase sample despite the presence of defects associated with the growth mode, whereas the P-V curve of the core suggests a stiffening of the Co-Fe PBA lattice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.