Abstract

Ternary nanocomposites of nickel molybdate/reduced graphene oxide/polypyrrole (NiMoO4/rGO/PPy), as the active material of the flexible supercapacitor electrodes, are prepared via a facile two-step route. In these nanocomposites, NiMoO4/rGO binary nanohybrid is grown directly on flexible nickel foam (NF) by hydrothermal method. It is found that this binary nanohybrid under different temperature treatments leads to hydrated and non-hydrated nickel molybdate nanostructures with different morphologies such as the honeycomb-like, nanorod, and their combination. The results reveal the competition of different behaviors of structure, morphology (or specific surface area), and electrical conductivity in the charge storage process of the samples. It is found that the ternary nanocomposite, including the annealed NiMoO4/rGO at a temperature of 450 °C (NiMoO4/rGO−450/PPy), exhibits a maximum specific capacitance of 1805 F g−1 at a current density of 1 A g−1. Moreover, the flexible all-solid-state asymmetric supercapacitor device, fabricated by using NiMoO4/rGO−450/PPy@NF and active carbon (AC)/graphite@NF electrodes, shows a maximum specific capacitance of 218.3 F g−1 in a potential window of 1.2 V and the highest energy density of 43.65 Wh/kg at the power density of 600 W kg−1. In addition, the flexibility of the supercapacitor does not show any adverse effect on its electrochemical performance in the bending state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.