Abstract

In this study, pattern-dependent nickel (Ni) metal-induced lateral-crystallization (Ni-MILC) polysilicon thin-film transistors (poly-Si TFTs) with ten nanowire channels and multigate structure were fabricated and characterized. Experimental results reveal that applying ten nanowire channels improves the performance of an Ni-MILC poly-Si TFT, which thus has a higher ON current, a lower leakage current, and a lower threshold voltage (V/sub th/) than single-channel TFTs. Furthermore, the experimental results reveal that combining the multigate structure and ten nanowire channels further enhances the entire performance of Ni-MILC TFTs, which thus have a low leakage current, a high ON/OFF ratio, a low V/sub th/, a steep subthreshold swing, and kink-free output characteristics. The multigate structure with ten-nanowire-channel Ni-MILC TFTs has a few poly-Si grain boundary defects, a low lateral electrical field, and a gate-channel shortening effect, all of which are associated with such high-performance characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.