Abstract

Lipid peroxidation (LPO) is the oxidative deterioration of polyunsaturated fatty acids (PUFA) with the production of lipid hydroperoxides, cyclic peroxides, cyclic endoperoxides, and finally fragmentation to ketones and aldehydes (including malonaldehyde, MDA). Estimation of LPO through MDA formation measured by assaying thiobarbituric acid (TBA) reactive products remains the method of choice to study the development of oxidative stress in tissues. However, MDA estimation by TBA reactive products is non-specific and often gives erroneous results. In this report we describe a method using high-performance liquid chromatographic separation to estimate MDA, formaldehyde (FDA), acetaldehyde (ADA), acetone, and propionaldehyde (PDA), the degradation products of oxygen-derived free radicals (ODFR) and PUFA, as presumptive markers for LPO. Oxidative stress was induced in the tissue by perfusing an isolated rat heart with hydroxyl radical generating system (xanthine + xanthine oxidase + FeCl 3 + EDTA). The coronary effluents were collected, derivatized with 2,4-dinitrophenyl-hydrazine (DNPH), and extracted with pentane. Aliquots of 25 μl in acetonitrile were injected onto a Beckman Ultrasphere C 18 (3 μm) column. The products were eluted isocratically with a mobile phase containing acetonitrile-water-acetic acid (40:60:0.1, v/v/v), measured at three different wavelengths (307, 325 and 356 nm) using a Waters M-490 multichannel UV detector and collected for gas chromatography-mass spectrometry (GC-MS) analysis. The peaks were identified by cochromatography with DNPH derivatives of authentic standards, peak addition, UV pattern of absorption at the three wavelengths, and by GC-MS. The retention items of MDA, FDA, ADA, acetone, and PDA were 5.3, 6.6, 10.3, 16.5, and 20.5 min, respectively. The results of our study indicated progressive increase of all five lipid metabolites as a function of the duration of ODFR perfusion. Hydroxyl radical scavengers, superoxide dismutase plus catalase, completely inhibited the formation of these lipid metabolites, demonstrating that the release of lipid metabolites from the isolated heart was indeed in response to oxidative stress. Since MDA, FDA, ADA, acetone, and PDA are the products of ODFR-PUFA interactions, this method allows proper estimation of LPO which monitors the oxidative stress developed during the reperfusion of ischemic myocardium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.