Abstract

Phylogeny reconstruction from molecular data poses complex optimization problems: almost all optimization models are NP-hard and thus computationally intractable. Yet approximations must be of very high quality in order to avoid outright biological nonsense. Thus many biologists have been willing to run farms of processors for many months in order to analyze just one dataset. High-performance algorithm engineering offers a battery of tools that can reduce, sometimes spectacularly, the running time of existing phylogenetic algorithms. We present an overview of algorithm engineering techniques, illustrating them with an application to the “breakpoint analysis” method of Sankoff et al., which resulted in the GRAPPA software suite. GRAPPA demonstrated a million-fold speedup in running time (on a variety of real and simulated datasets) over the original implementation. We show how algorithmic engineering techniques are directly applicable to a large variety of challenging combinatorial problems in computational biology.KeywordsInternal NodePriority QueuePhylogeny ReconstructionOriginal ImplementationBreakpoint DistanceThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.