Abstract

This work synthesizes a new bifunctional furan derivative (PDMS-FBZ) through a sequence of hydrosilylation of nadic anhydride (ND) with polydimethylsiloxane (PDMS), reaction of the product with p-aminophenol to form PDMS-ND-OH, and its subsequent Mannich reaction with furfurylamine and CH2 O. Then, the main chain-type copolymer PDMS-DABZ-DDSQ is prepared through a Diels-Alder (DA) cycloaddition of PDMS-FBZ with the bismaleimide-functionalized double-decker silsesquioxane derivative DDSQ-BMI. Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy confirm the structure of this PDMS-DABZ-DDSQ copolymer; differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA) reveal it to have high flexibility and high thermal stability (Tg = 177 °C; Td10 = 441 °C; char yield = 60.1 wt%); contact angle measurements reveal a low surface free energy (18.18 mJ m-2 ) after thermal ring-opening polymerization, because the inorganic PDMS and DDSQ units are dispersed well, as revealed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). This PDMS-DABZ-DDSQ copolymer possesses reversible properties arising from the DA and retro-DA reactions, suggesting its possible application as a functional high-performance material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.