Abstract

Sensors with high sensitivity, a wide detection range, large stretchability and skin-like elastic compliance are highly desirable for biomedical applications. Liquid metal (LM)-based composites, characterized by being highly stretchable and mechanically compatible to biological tissues, have great potential for stretchable wearable sensors, but they are limited to relatively small resistive changes with the applied stretch. Here we report a highly stretchable, conformable and highly sensitive strain sensor fabricated by inserting putty-like conductive mixture composed of SiO2 microspheres and LM into elastomer microchannels. The introduction of the SiO2 microspheres effectively improves the sensitivity of the sensor while retaining the desirable mechanical properties. The capture of various human activities, such as different states of mouth, finger, hand and elbow, has been demonstrated by using the prepared sensor and a wireless sensory system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.