Abstract

Fluorescent point-of-care (POC) sensors have found great utility in fields like clinical diagnosis, food testing, and environmental monitoring. Herein, we developed a highly stable POC sensor that enabled the visual detection of tetracycline (TC) in a distinct fluorescent-traffic-light manner. In the sensor, a composite material of copper nanoclusters and metal-organic framework (CuNCs@MOF-5) prepared with a facile one-pot synthetic strategy was employed as the core element for target recognition and signal transduction. As evidenced by experiments, the as-prepared CuNCs@MOF-5 exhibited significantly improved fluorescence properties in terms of emission enhancement (about 28-fold) and stability improvement (over 110 days) compared to the CuNCs without confining and protection by MOF-5. More importantly, it was found that TC could uniquely interact with Zn(II) to trigger the disassembly of CuNCs@MOF-5, resulting in green fluorescence emission from the TC-Zn(II) complex and red fluorescence weakening of CuNCs. On the basis of this finding, a simple and stable sensor was proposed for POC detection of TC, which demonstrated high sensitivity, selectivity, and reproducibility. In addition to homogeneous visual detection in a 96-well plate, a CuNCs@MOF-5-contained agarose gel array was easily fabricated to achieve direct detection of TC in milk without any pretreatment, thanks to the size-sieving effect of the gel. Moreover, a test paper array was also put forward for low-cost TC detection, which indicates the extensibility and practicability of this sensing strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.