Abstract
Hydrophobic polyvinylpyrrolidone (PVP) nanofibers, which is intensely hygroscopic, has been successfully prepared to improve their moisture resistance using a modified coaxial electrospinning process. A stearic acid (SA) solution was exploited as the sheath fluid to coat the fibers. Scanning electron microscopy demonstrated that the SA-coated PVP nanofibers became increasingly small with a rise in the sheath-to-core flow rate ratio; continuing to increase the sheath flow rate beyond a cut-off point resulted in nanofibres with very complicated morphologies. Transmission electron microscope images showed that SA formed a thin layer on the PVP nanofibers, with SA nanoparticles present on the fiber surfaces when a sheath-to-core flow rate ratio of 0.2:0.8 was used. Attenuated total reflectance-Fourier transform infrared spectroscopy verified the coating of SA onto the PVP nanofibers, and also the formation of hydrogen bonds between the SA and PVP molecules. The SA-coated PVP nanofibers were found to have much enhanced moisture resistance over pure PVP fibers. Modified coaxial electrospinning hence comprises a novel and powerful strategy for nanocoating and surface modification of polymer nanofibers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.