Abstract

The purpose of this paper is to study sparse representations of signals from a general dictionary in a Banach space. For so-called localized frames in Hilbert spaces, the canonical frame coefficients are shown to provide a near sparsest expansion for several sparseness measures. However, for frames which are not localized, this no longer holds true and sparse representations may depend strongly on the choice of the sparseness measure. A large class of admissible sparseness measures is introduced, and we give sufficient conditions for having a unique sparse representation of a signal from the dictionary w.r.t. such a sparseness measure. Moreover, we give sufficient conditions on a signal such that the simple solution of a linear programming problem simultaneously solves all the nonconvex (and generally hard combinatorial) problems of sparsest representation of the signal w.r.t. arbitrary admissible sparseness measures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.