Abstract

In this study, a highly sensitive colorimetric assay has been constructed for the determination of xanthine oxidase (XOD) activity by the GNP@MnO2 core-shell nanoparticles as probe. In the presence of XOD, xanthine can be oxidized to produce H2O2, which makes the MnO2 shell fallen off. With the single particle detection (SPD) based dark field microscopy (DFM), the scattering color of GNP@MnO2 NP probe shows obvious change before and after etching process. At the single particle level, noticeable color change of the single probe can be easily detected in the existence of trace XOD. This SPD-based colorimetric strategy displays broad linear dynamic range (0.02–4 mU/mL) and low detection limit of 7.82 μU/mL, which is more sensitive than the results from ensemble sample measurement. In addition, we tested the inhibitory effect of quercetin on the activity of XOD and obtained good inhibition effect. As a consequence, this SPD-based colorimetric strategy provides new perception for the ultrasensitive detection of molecules in complex system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.