Abstract

Fluoride anion (F−) affects environmental, biological, and chemical processes significantly. Therefore, its detection has received increasing attention, and sensitive, effective, and convenient probes for F− detection need to be developed urgently. In this work, two perylene tetra-(alkoxycarbonyl) (PTAC) based colorimetric and ratiometric probes, P1 and P2, were developed for the detection of F−. The interactions between F− and these two probes were investigated by absorption, electrochemistry, 1H NMR, and density functional methods. Both the two probes were complexed with F− with a ratio of 1:1. The detection limits of P1 and P2 were 0.22 μM and 0.87 μM, respectively. It was worth noting that the absorption peak of P1 showed a 190 nm red shift when sensing F−, and P1 is the largest red shift value reported in F− probes based on PTAC derivatives. This phenomenon was resulted from the unique configuration and deprotonation of P1 that can promote the intramolecular charge transfer (ICT). This strategy provides an example for the development of other ion probes based on D-A type ICT mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.