Abstract

A novel fiber-optic refractometer is proposed and demonstrated to achieve temperature- and axial strain-compensated refractive index measurement using highly sensitive outer-cladding modes in a tapered bend-insensitive fiber based Mach-Zehnder interferometer. Peak wavelength shifts associated with different spatial frequency peaks are calibrated to obtain a wavelength-related character matrix (λ)M(RI,T,ε) for simultaneous measurement of multiple environmental variables. A phase-related character matrix (Φ)M(RI,T,ε) is also acquired by direct determination of refractive index, temperature, and axial strain induced phase shifts of the corresponding sensing modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.