Abstract

Nanometer-sized copper sulfide has remarkable properties such as metal like electrical conductivity and electrocatalytic activity. In this work, ultrathin copper sulfide nanosheets (CuS NS) were synthesized and employed to modify on surface of glassy carbon electrode (GCE) combining with chitosan (CS) and acidified multi-walled carbon nanotubes (F-MWCNTs). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that the shape of CuS NS was hexagon with side length of 13.33 ± 0.67 nm and thickness of 4.50 ± 0.58 nm. The electrochemical characteristics of different nanocomposite modified electrodes were examined by using cyclic voltammetry (CV) and differential pulse voltammetry (DPV), indicating that the modified electrode of CuS NS-CS/F-MWCNTs/GCE possessed good electrocatalytic activity towards oxidation of L-tyrosine (L-Tyr). Under the optimal condition, the modified electrode exhibited a wide linear response range for L-Tyr (0.08–1.0 μM) with a detection limit of 4.9 nM. No obvious interferences from coexisted two-fold of L-tryptophan and 50-fold of other amino acids could be observed, indicating its relatively good selectivity. The electrode also had good repeatability, reproducibility and stability. Compared with a commercial instrument analytical method, HPLC, the electrode can be successfully applied to the determination of L-Tyr in pig serums with a recovery rate of 95.7%–102.6%, and its test results are in good agreement with that of HPLC, showing its promising application value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.