Abstract

On-surface synthesis of phenylenes is a promising strategy to form extended π-conjugated frameworks but normally lacks selectivity in achieving uniform products. Herein we demonstrate that the debromination reaction of 2,3-dibromophenazine (DBPZ) on Au(111) and Ag(111) surfaces can vary significantly considering the involvement of metal-organic hybrids (MOHs). On Au(111), [2 + 2] and [2 + 2 + 2] cycloadditions facilitate instantaneously upon the debromination occurring, while on Ag(111), several MOHs have been observed under sequential thermal annealing, leading to finally the uniform [2 + 2] cycloaddition product exclusively. By means of scanning tunneling microscopy (STM) and bond-resolved atomic force microscopy (BR-AFM), we have unambiguously depicted the chemical structure of related reaction intermediates and unraveled the undocumented role of hierarchical evolution of MOHs in steering the chemical selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.