Abstract

A highly selective dry etching process for the removal of silicon nitride (Si3N4) layers from silicon and silicon dioxide (SiO2) is described and its mechanism examined. This new process employs a remote O2/N2 discharge with much smaller flows of CF4 or NF3 as a fluorine source as compared to conventional Si3N4 removal processes. Etch rates of Si3N4 of more than 30 nm/min were achieved for CF4 as a source of fluorine, while simultaneously the etch rate ratio of Si3N4 to polycrystalline silicon was as high as 40, and SiO2 was not etched at all. For NF3 as a fluorine source, Si3N4 etch rates of 50 nm/min were achieved, while the etch rate ratios to polycrystalline silicon and SiO2 were approximately 100 and 70, respectively. In situ ellipsometry shows the formation of an approximately 10-nm-thick reactive layer on top of the polycrystalline silicon. This oxidized reactive layer suppresses etching reactions of the reactive gas phase species with the silicon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.