Abstract
Three well-defined diblock copolymers of poly(sulfobetaine methacrylate) [poly(SBMA)] and poly(propylene oxide) (PPO) were synthesized by the sequential addition of SBMA monomer to fixed amounts of PPO using an atom transfer radical polymerization method and varying poly(SBMA) lengths. These copolymers were characterized by 1H NMR and aqueous gel permeation chromatography. These copolymers were physically adsorbed onto a surface plasmon resonance (SPR) sensor surface covered by methyl-terminated self-assembled monolayers, followed by the in situ evaluation of protein adsorption on the adsorbed copolymers. It is found that the behavior of the protein adsorption depends on the molecular weight of the copolymers. Results show that the diblock copolymers containing poly(SBMA) can be highly protein resistant when surface SBMA densities are well controlled. Thus, copolymers containing zwitterionic groups are ideal for resisting protein adsorption when the surface density of zwitterionic groups is controlled.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.