Abstract

The chromenone derivatives (1-4) from the root part of Flemingia philippinensis showed a significant inhibition against bacterial neuraminidase (NA) which plays a pivotal role in a cellular interaction including pathogenesis of bacterial infection and subsequent inflammation. The compounds 1 and 2 were the new compounds, philippin D (1) and philippin E (2). In particular, compounds (1-3) exhibited sub micromolar levels of IC50 values with 0.75, 0.54, and 0.07 μM. This is the first report that chromenone skeleton emerged as a lead structure of bacterial NA inhibition. In kinetic study, 8,8-diprenyl compounds displayed competitive inhibitory mode, whereas 4a,8-diprenyl ones showed noncompetitive behavior. It was manifested that all competitive inhibitors (1 and 2) were simple reversible slow-binding against bacterial NA. The binding affinities (KSV) of inhibitors to enzyme were agreement with their respective inhibitory potencies. Molecular docking data confirmed that the position of 3-methyl-2-butenyl substituent affects inhibitory mechanism against CpNanI. The tri-arginyl cluster of R266, R555, and R615 and D291 in NanI tightly interact with the competitive inhibitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.