Abstract

Recently, flexible energy devices have been used to power up portable electronics such as E-skins, smart clothes, and bendable displays. However, the usage of rigid and inactive components in electrode materials limits the application in flexible energy devices. Here, we report a novel method to fabricate porous polyaniline composites (Pt_CPPy/PANI:CSA) using Pt decorated carboxyl polypyrrole nanoparticles (Pt_CPPyNPs) as a nucleating agent for electrodes of supercapacitors. The specific capacitance and electrical conductivity of the Pt_CPPy/PANI:CSA film are 325.0 F g-1 and 814 S cm-1, respectively, which are much higher than those of the pristine PANI:CSA film. Furthermore, the porous PANI:CSA composites exhibit excellent rate capability and cycling stability as the pores in the PANI structure enhance the active surface area between PANI and the ions of the electrolytes. This unique fabrication technique is an effective approach for preparing large scale highly porous polyaniline nanomaterials for diverse electrochemical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.