Abstract

A lanthanide-based three-dimensional metal-organic framework with excellent water, acid/base, and solvent stability, namely {[(CH3)2NH2]0.7[Eu2(BTDBA)1.5(lac)0.7(H2O)2]·2H2O·2DMF·2CH3CN}n (JXUST-29, H4BTDBA = 4',4‴-(benzo[c][1,2,5]thiadiazole-4,7-diyl)bis([1,1'-biphenyl]-3,5-dicarboxylic acid), Hlac = lactic acid), has been synthesized and characterized. Since the N atoms of the thiadiazole group will not coordinate with lanthanide ions, JXUST-29 has a free basic N-site accessible to small H+ ions, which allows it to be used as a promising pH fluorescence sensor. Interestingly, the luminescence signal was significantly enhanced, with an approximately 54-fold enhancement in the emission intensity when the pH value was increased from 2 to 5, which is the typical behavior of pH probes. In addition, JXUST-29 can also be used as a luminescence sensor to detect l-arginine (Arg) and l-lysine (Lys) in an aqueous solution through fluorescence enhancement and the blue-shift effect. The detection limits were 0.023 and 0.077 μM, respectively. In addition, JXUST-29-based devices were designed and developed to facilitate detection. Importantly, JXUST-29 is also capable of detecting and sensing Arg and Lys in living cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.