Abstract

AbstractTo obtain clean gasoline, a new nanohybrid catalyst (TPA@PAN@CH) was synthesized by immobilizing tungstophosphoric acid (TPA) on the surface of polyaniline (PAN) and chitosan (CH) polymers. The features of the materials were detected by FT‐IR, UV/vis, XRD, FE‐SEM, and EDX methods. The XRD patterns demonstrate that the average crystallite size of the TPA@PAN@CH is estimated to be approximately 45 nm, which corresponds to the results of the FE‐SEM. The catalytic performance of the TPA@PAN@CH was tested in the nano‐catalytic oxidative desulfurization (Ncat‐ODS) of gasoline and model fuels by H2O2/AcOH (volume proportion of 2:1) oxidizing agent. The best desulfurization outcomes were achieved by 0.1 g of the TPA@PAN@CH as a nanocatalyst at 35°C under mild reaction conditions. Based upon the above findings, the sulfur content could be declined from 0.4986 to 0.0193 wt%, which corresponds to performance of 96%. Mercaptan concentration decreased from 98 to 4 ppm, and the removal efficiency of model fuels declined in the order of DBT ≥ BT > Th. The high catalytic activity of TPA@PAN@CH was maintained for five cycles without significantly diminishing its performance. This work suggested the potential application of the TPA@PAN@CH for eliminating of hazardous sulfur compounds that significantly affect the efficacy of the Ncat‐ODS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.