Abstract

Highly crystalline perovskite films with large grains and few grain boundaries are conducive for efficient and stable perovskite solar cells. Current methods for preparing perovskite films are mostly based on a fast crystallization process, with rapid nucleation and insufficient growth. In this study, MAPbI3 perovskite with inhibited nucleation and promoted growth in the TiO2/ZrO2/carbon triple mesoscopic scaffold was crystallized by modulating the precursor and the crystallization process. N-methylformamide showed high solubility for both methylammonium iodide and PbI2 and hampered the formation of large colloids in the MAPbI3 precursor solution. Furthermore, methylammonium chloride was added to reduce large colloids, which are a possible source of nucleation sites. During the crystallization of MAPbI3, the solvent was removed at a slow controlled speed, to avoid rapid nucleation and provide sufficient time for crystal growth. As a result, highly oriented MAPbI3 crystals with suppressed non-radiative recombination and promoted charge transport were obtained in the triple mesoscopic layer with disordered pores. The corresponding hole-conductor-free, printable mesoscopic perovskite solar cells exhibited a highest power conversion efficiency of 18.82%. The device also exhibited promising long-term operational stability of 1000 h under continuous illumination at maximum power point at 55 ± 5 °C and damp-heat stability of 1340 h aging at 85 °C as well as 85% relative humidity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.