Abstract

Abstract In this study, mesoporous bioactive glass particles (MBGs) are incorporated into poly(lactic-co-glycolic acid) (PLGA) to fabricate highly interconnected macroporous composite scaffolds with enhanced mechanical and biological properties via a developed supercritical carbon dioxide (scCO2) foaming method. Scaffolds show favorable highly interconnected and macroporous structure through a high foaming pressure and long venting time foaming strategy. Specifically, scaffolds with porosity from 73% to 85%, pore size from 120 μm to 320 μm and interconnectivity of over 95% are controllably fabricated at MBG content from 0 wt% to 20 wt%. In comparison with neat PLGA scaffolds, composite scaffolds perform improved strength (up to 1.5 folds) and Young's modulus (up to 3 folds). The interconnected macroporous structure is beneficial to the ingrowth of cells. More importantly, composite scaffolds also provide a more promising microenvironment for cellular proliferation and adhesion with the release of bioactive ions. Hopefully, MBG/PLGA scaffolds developed by the green foaming strategy in this work show promising morphological, mechanical and biological features for tissue regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.