Abstract

Water in hydrophobic nanospaces shows specific dynamic properties different from bulk water. The investigation of these properties is important in various research fields, including materials science, chemistry, and biology. The elucidation of the correlation between properties of water and hydrophobic nanospaces requires nanospaces covered only with simple hydrophobic group (e.g., fluorine) without impurities such as metals. This work successfully fabricated all-organic diamondoid porous organic salts (d-POSs) with highly fluorinated nanospaces, wherein hydrophobic fluorine atoms are densely exposed on the void surfaces, by combining fluorine substituted triphenylmethylamine (TPMA) derivatives with tetrahedral tetrasulfonic acid. This d-POSs with a highly fluorinated nanospace significantly improved their water stability, retaining their crystal structure even when immersed in water over one week. Moreover, this highly hydrophobic and fluorinated nanospace adsorbs 160 mL(STP)/g of water vapor at Pe/P0=0.90; this is the first hydrophobic nanospace, which water molecules can enter, in an all-organic porous material. Furthermore, this highly fluorinated nanospace exhibits very high proton conductivity (1.34×10-2 S/cm) at 90 °C and 95 % RH. POSs with tailorable nanospaces may significantly advance the elucidation of the properties of specific "water" in pure hydrophobic environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.