Abstract
Quasi-two-dimensional (quasi-2D) perovskite has exhibited great potential to be an ideal luminescent material for perovskite light-emitting diodes (PeLEDs). However, the low-order phases (especially n = 1 phase) and the inevitable defects result in massive nonradiative recombination and poor emission efficiency. Herein, a multifunctional molecule of tetrabutylammonium dihydrogen phosphate (TDP) is introduced to simultaneously suppress the low-n phase, passivate the defects, and increase the exciton binding energy of the quasi-2D perovskite for massive radiative recombination and thus high emission efficiency. The multifunctional roles of TDP are realized by the synergistic effects of tetrabutylammonium cation and dihydrogen phosphate anion, both of which show strong interaction with the lead bromide octahedron of the perovskite. As a result, the TDP-incorporated perovskite films show a great enhancement of the emission efficiency with a remarkable increase in photoluminescence quantum yield (PLQY) from 34.6 to 96.9% at the wavelength of 522 nm. The strengthened radiative recombination promotes efficient emission efficiency with over 2.5-fold improvement in external quantum efficiency (EQE) and current efficiency (CE) from 3.27% and 10.83 cd A-1 to 9.25% and 28.35 cd A-1, respectively, as well as high brightness with over 37% enhancement from 12713 to 17536 cd m-2. Consequently, this work contributes to an efficient approach to employ a multifunctional molecule for highly emissive quasi-2D perovskites and enhanced quasi-2D PeLED performances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.