Abstract

Lithium (Li) metal is promising for high energy density batteries due to its low electrochemical redox potential and high specific capacity. However, the formation of dendrites and its tendency for large volume expansion during plating/stripping restrict the application of Li metal in practical scenarios. In this work, we developed reduced graphene oxide-graphitic carbon nitride (rGO-C3N4, GCN) with highly elastic and wrinkled structure as the current collector. Lithiophilic site C3N4 in GCN could reduce the nucleation overpotential. In addition, this material effectively inhibited electrode expansion during cycling. At the same time, due to its high elasticity, GCN could release the stress induced by Li deposition to maintain structural integrity of the electrode. Li-metal anodes with GCN exhibited small volume expansion, high Coulombic efficiency (CE) of 98.6% within 300 cycles and long cycling life of more than 1700 h. This work described and demonstrated a new approach to construct flexible current collectors for stable lithium-metal anodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.