Abstract

In medical applications, two-dimensional nanomaterials have been widely studied on account of their intriguing properties such as good biocompatibility, stability, and multifunctionality. Herein, an ultrathin MnO2 nanosheet has been fabricated by a simplistic hydrothermal process. The high photothermal conversion performance (62.4%) can be attributed to the vacancy in the ultrathin MnO2 nanosheet, as confirmed by the extended X-ray absorption fine structure results and the density functional theory calculation, benefiting photoacoustic imaging-guided cancer therapy. This highly efficient vacancy-induced photothermal therapy has been reported for the first time. As a result, this work demonstrates that this ultrathin MnO2 nanosheet has a potential to construct a nanosystem for imaging-guided cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.