Abstract

Sorption is prominent in low price, high efficiency, availability, and eco-friendliness. Organic porous materials have the characteristics of easy functionalization, diverse structure and stability, and show great potential in adsorption, energy storage, catalysis, and other fields. A mesoporous phenolic resin-type polymer (PRP) was successfully synthesized and modified by solid state reaction with maleic anhydride to prepare adsorbent (called as PRP-MAH) for sorption of Pb2+. The impact of reaction conditions (the pH value, reaction temperature, fresh concentration of solution, ionic strength and reaction time, etc.) was systematically studied. Characterization methods such as SEM, FTIR, and XPS indicated that the synthesized adsorbent PRP-MAH had regular morphology and good stability. The fitting of isothermal adsorption experiment data conforms to Langmuir sorption isotherm, and the sorption capacity reached 366.40mg·g-1 at 308K. The kinetic data were consistent with the quasi-second-order model, which indicated that the chemisorption might play the main role in the sorption process. Thermodynamic research manifested that the sorption of Pb2+ by PRP-MAH was carried out by a spontaneous process at the study temperature. The studies show that PRP-MAH can remove Pb2+ from water solution through ion exchange, electrostatic attraction, and surface complexation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.